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In the paper ‘‘Prediction of steady state flow in nonuniform
geologic media by conditional moments: Exact nonlocal for-
malism, effective conductivities, and weak approximation’’ by
Shlomo P. Neuman and Shlomo Orr (Water Resources Re-
search, 29(2) 341–364, 1993) the authors developed a nonlocal
formalism for steady state flow in randomly heterogeneous
porous media by conditional moments. They considered the
steady state flow equation and boundary conditions

¹ ? @K~x!¹h~x!# 1 f~x! 5 0 on V (1)

h~x! 5 H~x! on GD (2)

K~x!¹h~x! ? n~x! 5 Q~x! on GN (3)

where x is the vector of space coordinates, ¹ is the grad oper-
ator with respect to x, K is hydraulic conductivity, h is hydraulic
head, f is a source term, V is the flow domain, H is prescribed
head on the Dirichlet boundary segment GD, n is a unit out-
ward normal to the boundary G, and Q is prescribed flux across
the Neumann boundary segment GN. They took K , f, H, and
Q to be statistically independent random fields such that K 5
^K&k 1 K9, f 5 ^f& 1 f9, H 5 ^H& 1 H9, and Q 5 ^Q& 1
Q9, where angle brackets denote ensemble mean (statistical
expectation), the subscript k denotes conditioning on mea-
sured K values, and primed quantities represent zero (condi-
tional) mean fluctuations. The authors showed that the corre-
sponding conditional mean head satisfies the integrodifferential
equation and boundary conditions

¹ ? @^K~x!&k¹^h~x!&k 2 rk~x!# 1 ^f~x!& 5 0 on V (4)

^h~x!&k 5 ^H~x!& on GD (5)

@^K~x!&k¹^h~x!&k 2 rk~x!# z n~x! 5 ^Q~x!& on GN (6)

where rk(x) 5 2^K9(x)¹h9(x)&k is a conditional residual flux
given by integral expressions. From (F7), which is exact, of
Neuman and Orr’s paper it follows that

rk~x! 5 E
V

ak~x, y!¹ y^h~y!&k dy1E
V

bk~x, y!rk~y! dy (7)

where the kernels

ak~x, y! 5 ^K9~x!K9~y!¹¹ y
T&~x, y!&k (8)

bk~x, y! 5 ^K9~x!¹¹ y
T&~x, y!&k (9)

form second-rank positive semidefinite symmetric and non-
symmetric tensors, respectively, & being the random Green’s
function associated with (1)–(3), and ¹y the grad operator with
respect to y. Equation (7) is implicit in rk; we include it here
because it was not presented in this form by Neuman and Orr.
Instead, they presented an explicit alternative to (7) which,
according to their (12), has the form

rk~x! 5 E
V

ak~x, y!¹ y hk~y! dy 1 boundary integrals (10)

where hk(x) is the solution of (4)–(6) corresponding to rk [ 0.
The boundary integrals, as defined in (12), (19b), and (19c) of
Neuman and Orr, require correction. We demonstrate in
Appendix A that the correct form of (10) is

rk~x! 5 E
V

ak~x, y!¹ y hk~y! dy 1 E
GN

ck~x, y!^Q~y!& dy

1 E
V

E
GN

dk~x, y, z!^Q~z!& dz dy (11)

where the kernels ck(x, y) and dk(x, y, z) are conditional vectors
independent of the source and boundary terms f, H, Q, and
given by

ck~x, y! 5 2^K9~x!K9~y!¹&~x, y!&k^K~y!&k
21

2 ^K9~x!K~y!21&k^K~y!&k¹G~x, y! (12)

dk~x, y, z! 5 ^K9~x!¹&~x, y!¹ y
TK9~y!¹ yG~y, z!

z @^K~z!&kK~z!21 2 1#&k (13)

where G is the deterministic Green’s function associated with
(4)–(6) upon setting rk [ 0. Equations (11)–(13) supersede
(12), (19b), and (19c) of Neuman and Orr.
The last two terms in (11) drop out when all Neumann

boundary conditions are of the mean no-flow type, ^Q(x)& [ 0.
This can be achieved in practice by moving GN a small distance
« outward, defining it as a mean no-flow boundary, then for-
mally absorbing Q along the original Neumann boundary (just
inside the newly defined mean no-flow boundary) into the
interior source term f. The last two terms in (11) also drop out
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in the special case where K(x) along GN is deterministic
(known with certainty) so that K9(x) [ 0.
Equation (12) of Neuman and Orr contains a Dirichlet

boundary integral which no longer appears in our correct ex-
pression (11). Hence all Dirichlet boundary integrals which
stem from Neuman and Orr’s (12) must be eliminated from
their paper. Likewise, all Neumann boundary integrals which
stem from (12) in their paper must be replaced by the sum of
two integrals compatible with the last two terms in our (11).
Based on the presence of a Dirichlet boundary integral in

their (30), Neuman and Orr concluded that when an effective
hydraulic conductivity tensor exists in the presence of Dirichlet
boundaries separated by a finite distance, this tensor is non-
symmetric. Upon dropping the Dirichlet boundary integral
from their (30) there no longer remains a basis for this con-
clusion.
We end by correcting a typographical error in (38) of Neu-

man and Orr. This equation should have fi
2 rather than f i in the

numerator:

Fi 5
2sY

2

pl i
2 E

o

p/ 2 E
o

p/ 2 f i
2

fTl22f
sin f df du (14)

Appendix A
Equations (A6) and (A10) of Neuman and Orr show cor-

rectly that

h~x! 5 E
V

&~x, y! f~y! dy

2 E
GD

K~y!¹ y&~x, y! ? n~y!H~y! dy

1 E
GN

&~x , y!Q~y! dy (A1)

hk~x! 5 E
V

G~x, y!^f~y!& dy

2 E
GD

^K~y!&k¹ yG~x, y! ? n~y!^H~y!& dy

1 E
GN

G~x, y!^Q~y!& dy (A2)

In accord with their (A11) and (A12), we rewrite (1) as

+h~x! 1 f~x! 5 ~L 1 R!h~x! 1 f~x! 5 0 (A3a)

where

+ 5 ¹ ? @K~x!¹# L 5 ¹ ? @^K~x!&c¹#
(A3b)

R 5 ¹ ? @K9~x!¹#

^+&c 5 L 5 ¹ ? @^K~x!&c¹# ^R&c ; 0. (A3c)

Rewriting (A3a) as Lh(x) 5 2f(x) 2 Rh(x); premultiplying
by G; applying Green’s identity twice; and recognizing that G
satisfies LG 1 d 5 0 where d is the Dirac delta function,
subject to homogeneous boundary conditions, yields

h~x! 5 2L21f~x! 2 L21Rh~x! 1 B@H~x!, Q~x!# . (A4)

Here we have defined the inverse operator L21 as

L21f~x! 5 2E
V

G~x, y! f~y! dy (A5)

so that h1 5 2L21f is the solution of Lh1 1 f 5 0, subject
to homogeneous boundary conditions H [ Q [ 0, and de-
fined the nonhomogeneous boundary integral B as

B@H~x! , Q~x!# 5 2E
GD

^K~y!&k¹ yG~x, y! ? n~y!H~y! dy

1 E
GN

G~x, y!^K~y!&kK~y!21Q~y! dy (A6)

Analogous to (A5), we define the inverse operator +21 as

+21f~x! 5 2E
V

&~x, y! f~y! dy (A7)

so that h2 5 +21f is the solution of +h2 1 f 5 0 subject to
homogeneous boundary conditions H [ Q [ 0. Note that our
definitions of L21 and +21 here differ from those in Appendix A
of Neuman and Orr in that the latter include nonhomogeneous
boundary integrals while our (A5) and (A7) do not. Only if L21

and +21 are defined as we have done here are the following
algebraic manipulations valid, hence the need for this correction.
Let us rewrite (A4) as

~1 1 L21R!h 5 2L21f 1 B. (A8)

It is easy to verify that I 5 LL21 5 (+ 2 R)L21 where I is
the identity operator. Premultiplying by +21, and recognizing
that +21+L21 5 L21 (because L21 generates a function
that satisfies homogeneous boundary conditions, and +21+ 5
I when operating on such a function), yields +21 5 L21 2
+21RL21. With this it is easy to check that

~1 2 +21R!~1 1 L21R! 5 I. (A9)

Operating on (A8) with (1 2 +21R) and using (A9) yields

h 5 ~1 2 +21R!~2L21f 1 B! . (A10)

We rewrite (A10) as

h 5 ~1 2 +21R!~2L21f 1 Bo 1 N! (A11)
where

Bo@H~x! , Q~x!# 5 2E
GD

^K~y!&k¹ yG~x, y! ? n~y!H~y! dy

1 E
GN

G~x, y! Q~y! dy (A12)

and

N@H~x! , Q~x!# 5 E
GN

G~x, y!@^K~y!&kK~y!21 2 1#Q~y! dy.

(A13)

Operating on (A11) with K9¹; taking conditional mean; noting
that ^2L21f 1 Bo&k 5 2L21 ^f& 1 Bo[^H& , ^Q&] 5 hk by
virtue of (A2); substituting the definitions of +21, R, and N;
applying Green’s identity; and considering that rk 5
2^K9¹h9&k 5 2^K9¹h&k leads directly to (11)–(13).
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